Exporting a Test Execution

Xporter for Jira allows you to get the following data from the Xray Test Execution:

® Overall Execution Status

® [terating Test Runs associated with a Test Execution

Exporting Test Runs custom fields

Iterating Pre-Conditions associated with a Test Run

Iterating Attachments associated with a Test Run

Iterating Evidences associated with a Test Run

Iterating Defects associated with a Test Run

Iterating Automated Test details associated with a Test Run
Iterating Manual Test Step details associated with a Test Run
Iterating Manual Test Step Attachments associated with a Test Run
Iterating Manual Test Step Defects associated with a Test Run
Iterating Manual Test Step Evidences associated with a Test Run
Manual Test Step Custom Fields associated with a Test Run
Exporting Test Run Activity

Exporting Parameterized Tests from a Test Run

O O 0O O O 0O O O O 0O O O O

@ If a Test Execution contains a lot of information, it can decrease Jira performance

Overall Execution Status

Export the Overall Execution Status with name and percentage for each Test Execution Status

${Overal | Execution Status}

You can print the status of the Test Execution by using the following notation:

% per Status Number of Tests per Status

${Overall Execution Status.NameOfStatus} = ${Overall Execution Status.NameOfStatus.Count}

See the real example:

Expand to see the examples on sample code of a Test Execution details

Todo: ${Overall Execution Status.TODG % (${Overal |l Execution Status. TODO Count})

Fail: ${Overall Execution Status.FAlIL}% (${Overall Execution Status.FAlL.Count})

Pass: ${Overal | Execution Status.PASS}% (${Overal |l Execution Status.PASS. Count})

Executing: ${Overall Execution Status. EXECUTI NG % (${Overal | Execution Status. EXECUTI NG Count})
Aborted: ${Overall Execution Status. ABORTED} % (${Overall Execution Status. ABORTED. Count})

You can also use the translated name of Overall Execution Status to get the same information.

Language Translated Name

ES Estado de ejecucion general
DE Allgemeiner Ausfilhrungsstatus
FR Etat d'Exécution Global

See the example:

Expand to see the examples on sample code

Todo: ${Estado de ejecuci 6n general . TODG % (${ Est ado de ej ecuci 6n general . TODO. Count })

Fail: ${Estado de ejecuci 6n general . FAl L}% (${Estado de ejecuci 6n general . FAI L. Count})

Pass: ${Estado de ejecuci 6n general . PASS} % (${Est ado de ej ecuci 6n general . PASS. Count })

Executing: ${Estado de ejecuci 6n general . EXECUTI NG % (${ Est ado de ej ecuci 6n general . EXECUTI NG Count })
Aborted: ${Estado de ejecuci 6n general . ABORTED} % (${ Est ado de ej ecuci 6n general . ABORTED. Count })

Iterating Test Runs associated with a Test Execution

Xporter for Jira allows rendering of all the Test Tuns associated with a Test Execution.

Definition:
$ {TestRuns[n].Field}

n is the index of the Test Run, starting from 0. The field TestRunsCount or TestrunsCount was created in order to give the total number of Test Runs.
Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#l terating over Test Runs
#{for testruns}
Execution Status: ${TestRuns[n].Execution Status}
Assi gneel D. ${ Assi gneel d}
Rank: ${Test Runs[n]. Rank}
Execut ed By: ${TestRuns[n].Executed By}
Started On: ${TestRuns[n].Started On}
Fi ni shed On: ${Test Runs[n]. Fi ni shed On}
Comment : ${wi ki : Test Runs[n] . Corment }
Execution Defects Count: ${TestRuns[n].Executi onDefectsCount}
Test Steps Defects Count: ${TestRuns[n]. Test St epsDef ectsCount}
Evi dences Count: ${TestRuns[n].Executi onEvi dencesCount}
#{ end}

Exporting Test Runs custom fields

To export Test Runs Custom Fields you just have to defined the placeholder with the name of you custom field.

Example: Image that you have a custom field called "Run CF". To get the value printed on you document you just have to use the following placeholder:
#{for testruns}

The Run CF value is: ${TestRuns[n].Run CF}
#{ end}

@ If your custom field type is a Number, Data or Date Time you can use formatting functions.

Iterating Pre-Conditions associated with a Test Run
Xporter for Jira allows rendering of the Pre-Conditions associated with a Test from a Test Run.

Definition:

https://docs.getxray.app/display/XRAY/Helper+Functions

${TestRuns[n].PreCondition.Field} -
DEPRECATED

${TestRuns[n].PreConditions[p].Field}

n is the index of Test Runs, starting from 0. The fields available for Pre-Conditions are:

Key

Summary
Conditions
Pre-Condition Type

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#Getting data from Pre-Conditions
${ Test Runs[n] . PreCondi ti onsCount }
#{for p=TestRuns[n].PreConditionsCount}
Pre-Condi ti on Key: ${TestRuns[n].PreConditions[p].Key}
Pre-Condition Summary: ${TestRuns[n].PreConditions[p].Summary}
Condition: ${TestRuns[n].PreConditions[p].Conditions}
Type: ${TestRuns[n].PreConditions[p].Pre-Condition Type}
#{ end}
#{ end}

DEPRECATED - Expand to see the example on sample code

#lterating over Test Runs

#{for testruns}
#Getting data from Pre-Condition
Pre-Condition Key: ${TestRuns[n].PreCondition.Key}
Pre-Condition Summary: ${TestRuns[n].PreCondition. Sumary}
Condi tion: ${ Test Runs[n] . PreCondi ti on. Condi ti ons}
Type: ${TestRuns[n].PreCondition.Pre-Condition Type}

#{ end}

Iterating Attachments associated with a Test Run
Xporter for Jira allows rendering of all the Attachments associated with a Test Run.
Definition:

$ {TestRuns[n].AttachmentsCount[sa]}

sa is the index of the Attachments, starting from 0. The field AttachmentsCount was created in order to give the total number of Attachments of a Test
Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating Test Attachnents
#{for sa=Test Runs[n].Attachnent sCount}
Name: ${Test Runs[n]. Attachnents[sa]. Nane}
Aut hor: ${Test Runs[n]. Attachnent s[sa] . Aut hor}
ID: ${TestRuns[n].Attachnents[sa].|D}
Si ze: ${TestRuns[n].Attachnents[sa]. Size}
#{ end}
#{ end}

‘ @ If a Test Execution contains a lot of information, it can decrease Jira performance

Iterating Evidences associated with a Test Run
Xporter for Jira allows rendering of all the Evidences associated with a Test Run.

Definition:
$ {TestRuns[n].ExecutionEvidences[d]}

d is the index of the Evidences, starting from 0. The field ExecutionEvidencesCount was created in order to give the total number of Evidences of a Test
Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over Evidences
#{for d=Test Runs[n].Executi onEvi dencesCount}
Id: ${Test Runs[n].ExecutionEvi dences[d].|d}
Nare: ${ Test Runs[n]. Executi onEvi dences[d] . Name}
Aut hor: ${Test Runs[n] . Executi onEvi dences[d] . Aut hor}
Link: @title=${Test Runs[n]. ExecutionEvi dences[d].FileURL}| href=%{Test Runs[n]. Executi onEvi dences
[d].FileURL}}
Si ze: ${Test Runs[n].ExecutionEvi dences[d].Si ze}
Created: ${TestRuns[n].ExecutionEvi dences[d]. Created}
HumanReadabl eSi ze: ${Test Runs[n] . Executi onEvi dences|[d] . HumanReadabl eSi ze}
M meType: ${Test Runs[n]. Executi onEvi dences[d].M neType}
Evi dence: ${ Test Runs[n] . Execut i onEvi dences[d] . Evi dence}
#{ end}
#{ end}

Iterating Defects associated with a Test Run
Xporter for Jira allows rendering of all the defects associated with a Test Run.
Definition:

$ {TestRuns[n].ExecutionDefects[e]}

e is the index of the defects, starting from 0. The field ExecutionDefectsCount was created in order to give the total number of Defects of a Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over defects fromeach test run
#{for e=Test Runs[n].Executi onDef ect sCount}
Link: @title=${Test Runs[n].ExecutionDefects[e].Key}|href=${BaseURL}/browse/ ${ Test Runs[n] .
Executi onDef ect s[e] . Key}}
Summary: ${Test Runs[n].Executi onDef ects[e]. Summary}
#{ end}
#{ end}

Iterating Automated Test details associated with a Test Run
Xporter for Jira allows rendering of the Details from Automated Tests associated with a Test Run.

Definition:

Cucumber Scenario: $ {TestRuns[n].Cucumber Scenario}

Test Definition: $ {TestRuns[n].Generic Test Definition}

n is the index of the Test Runs, starting from 0. The fields Cucumber Scenario/Generic Test Definition were created in order to give the step details of
Automated Tests of a Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#l terating over Test Runs
#{for testruns}
#Test Run Step Details
Cucunber Scenario: ${TestRuns[n].Cucunber Scenari o}
Test Definition: ${TestRuns[n].Generic Test Definition}
#{ end}

‘ @ If a Test Execution contains a lot of information, it can decrease Jira performance

Iterating Manual Test Step details associated with a Test Run
Xporter for Jira allows rendering of the Details from Manual Tests associated with a Test Run.
Definition:

$ {TestRuns[n].TestSteps[r]}

r is the index of the Test Steps, starting from 0. The field TestStepsCount or TeststepsCount was created in order to give the step details of Manual
Tests of a Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
St epNunber : ${ Test Runs[n] . Test Steps[r] . St epNunber}
Action: ${wiki:TestRuns[n]. TestSteps[r].Action}
Data: ${wi ki: Test Runs[n]. Test Steps[r]. Data}
Expected Result: ${w ki: Test Runs[n]. Test Steps[r]. Expect edResul t}
Comment : ${w ki : Test Runs[n] . Test Steps[r]. Corment }
St at us: ${ Test Runs[n] . Test Steps[r]. Stat us}
Actual Result: ${w ki:TestRuns[n].TestSteps[r].Actual Result}
#{ end}
#{ end}

Iterating Manual Test Step Attachments associated with a Test Run
Xporter for Jira allows rendering of the Attachments from Manual Tests Steps associated with a Test Run.

Definition:
$ {TestRuns[n].TestSteps[r].Attachments[sa]}

sa is the index of the Test Step Attachments, starting from 0. The field AttachmentsCount was created in order to give the step attachments of Manual
Tests of a Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
#lterating over Test Step Attachnents
#{for sa=Test Runs[n]. Test Steps[r].AttachnentsCount}
Nare: {TestRuns[n].TestSteps[r].Attachments[sa].Name}
Aut hor: {TestRuns[n]. Test Steps[r].Attachnents[sa]. Aut hor}
Link: {title={TestRuns[n]. TestSteps[r].Attachnents[sa].FileURL}|href={TestRuns[n].
Test Steps[r]. Attachnents[sa].Fil eURL}}
Si ze: {TestRuns[n].TestSteps[r].Attachments[sa].Size}
#{ end}
#{ end}
#{ end}

(D If a Test Execution contains a lot of information, it can decrease Jira performance

Iterating Manual Test Step Defects associated with a Test Run
Xporter for Jira allows rendering of the Defects from Manual Tests Steps associated with a Test Run.
Definition:

$ {TestRuns[n].TestSteps[r].Defects[dc]}

dc is the index of the Test Step Defects, starting from 0. The field DefectsCount was created in order to give the step defects of Manual Tests of a Test
Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#l terating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
#lterating over Test Step Defects
#{for dc=Test Runs[n]. Test Steps[r]. Def ect sCount}
Link: {title={TestRuns[n]. TestSteps[r]. Defects[dc].Key}|href={BaseURL}/browse/{Test Runs
[n]. TestSteps[r].Defects[dc].Key}}
Summary: {w ki: Test Runs[n]. Test Steps[r]. Defects[dc].Sumary}
#{ end}

#{ end}
#{ end}

Iterating Manual Test Step Evidences associated with a Test Run
Xporter for Jira allows rendering of the Evidences from Manual Tests Steps associated with a Test Run.

Definition:
$ {TestRuns[n].TestSteps[r].Evidences[e]}

e is the index of the Test Step Evidences, starting from 0. The field EvidencesCount was created in order to give the step evidences of Manual Tests of a
Test Run.

Since a Test Run isn't a Jira Issue, you can render only the following mappings.

Example:

Expand to see the example on sample code

#lterating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
#l terating over Test Step Evidences
#{for e=TestRuns[n]. Test Steps[r].Evi dencesCount}
Narme: ${Test Runs[n]. Test Steps[r]. Evi dences[e] . Nane}
Aut hor: ${Test Runs[n]. Test Steps[r]. Evidences[e]. Aut hor}
Link: @title=${TestRuns[n]. TestSteps[r].Evidences[e].FileURL}|href=%{TestRuns[n].
Test Steps[r]. Evidences[e].Fil eURL}}
Size: ${TestRuns[n].TestSteps[r].Evidences[e].Size}
Created: ${TestRuns[n]. TestSteps[r].Evi dences[e]. Created}
HumanReadabl eSi ze: ${ Test Runs[n]. Test Steps[r]. Evi dences[e] . HuinanReadabl eSi ze}
M meType: ${TestRuns[n]. Test Steps[r].Evi dences[e].M neType}
Evi dence: ${ Test Runs[n] . Test Steps[r]. Evi dences[€] . Evi dence}
#{ end}

#{ end}
#{ end}

@ If you want to export the images, for example ${TestRuns[n].ExecutionEvidences[d].FileURL} you can check here for instructions on how to do it.

Manual Test Step Custom Fields associated with a Test Run

http://confluence.xpand-addons.com/display/XPORTER/Functions#Functions-ImageLoader

To export Test Steps Custom Fields within a Test Run you just have to define the placeholder with the name of your custom field.

Example: Image that you have a custom field called "Run CF". To get the value printed on your document you just have to use the following placeholder:

#lterating over Test Runs
#{for testruns}
#lterating over Manual Test Steps from Test Run
#{for r=TestRuns[n]. Test St epsCount}
#Add Custom Fiel d nane, for exanple Run CF
Run CF: ${TestRuns[n].TestSteps[r].Run CF}
#{ end}
#{ end}

@ If your custom field type is a Number, Data, or Date Time you can use formatting functions.

Exporting Test Run Activity
Xporter for Jira allows export all the activity of a Test Run.

Definition:
$ {TestRuns[n].ActivityEntries[ac]}

ac is the index of the Activity entry, starting from 0. The field ActivityEntriesCount was created in order to give the Activity entry of a Test Run.

Example:

Expand to see the example on sample code

#{for testruns}

#{for d=TestRuns[n].ActivityEntriesCount}

Action: ${TestRuns[n].ActivityEntries[d].Action}

Aut hor: ${Test Runs[n].ActivityEntries[d].Author}

Created at: ${dateformat("dd-MvVtyyyy HH nm ss"): Test Runs[n]. ActivityEntries[d].Created}
Changes:

#{for ch=TestRuns[n].ActivityEntries[d].ActivityltensCount}

Field: ${TestRuns[n].ActivityEntries[d].Activityltens[ch].Field}

A dVval ue: ${TestRuns[n].ActivityEntries[d].Changedltens[ch].d dVal ue}

NewVal ue: ${Test Runs[n]. ActivityEntries[d].Changedltens[ch]. Newal ue}

#{ end}
#{ end}
#{ end}

Exporting Parameterized Tests from a Test Run

To export all this data, we first need to execute the test run. If we change any data, we need to return to the Execution Page and merge it with the new
data.

Fields Description
IsDataDriven Returns "true" if the current test run is data-driven; otherwise, it returns "false"

Iterations Overall Execution Status.STATUS.Percentage = The percentage of STATUS in the test run iterations

IterationsOverallExecutionStatus List of all the statuses in the current test run iteration and their percentages
IterationsOverallExecutionStatus.STATUS.Count The number of STATUS in the test run iterations
Parameters List of the parameters from each test run iteration

ParametersCount Total of Parameters declared in Dataset

https://docs.getxray.app/display/XRAY/Helper+Functions

@ Data-driven

The field IsDataDriven is going to return TRUE only if the test run has more than one iteration.

Exporting Test Runs Parameters from a Test Execution
For each Test Run Parameter you can export the following fields:

* Key
®* Value

Below you can find an example of how to iterate over the list of Test Run Parameters associated with a Test Execution.

Some mappings we can export from Test Runs Parameters

/1 lterating each test run
#{for testruns}
/] lterating over paraneters for each test run
Paraneters Total : ${Test Runs[n]. ParanetersCount}
#{for mrTest Runs[n]. Par anet er sCount}
Key: ${TestRuns[n]. Paraneters[ni.Key}
Val ue: ${Test Runs[n]. Paraneters[ni. Val ue}
#{ end}
#{ end}

Exporting Test Runs Iterations from a Test Execution
For each Test Run Iteration you can export the following fields:

Overall Execution Status

Data from Test Run lterations
Parameters from Test Run lterations
PreConditions from Test Run Iterations
Test steps from Test Run Iterations

Below you can find an example of how to iterate over the list of Test Run Iterations associated with a Test Execution.

Some mappings we can export from Test Run Iterations

/'l lterating each test run
#{for testruns}
I sDat aDriven: ${TestRuns[n].|sDataDriven}

/1 lterations Overall Execution Status (percentage + total of testes per status)

List of Statuses: ${TestRuns[n].lterations Overal|l Execution Status}

TO DO ${TestRuns[n].lterations Overall Execution Status.TODO % - ${TestRuns[n].lterations Overall
Execution Status. TODO. Count}

EXECUTI NG ${TestRuns[n].lterations Overall Execution Status.EXECUTING % - ${TestRuns[n].lterations Overall
Execution Status. EXECUTI NG Count }

PASSED: ${TestRuns[n].lterations Overall Execution Status.PASSED}% - ${TestRuns[n].Iterations Overall
Execution Stat us. PASSED. Count }

FAI LED: ${TestRuns[n].lterations Overall Execution Status.FAI LED}% - ${TestRuns[n].Iterations Overall
Executi on Status. FAI LED. Count}

ABORTED: ${TestRuns[n].lterations Overall Execution Status. ABORTED}% - ${TestRuns[n].Iterations Overall
Execution Status. ABORTED. Count}

/] lterating over test runs iterations
Total of Iterations froma Test Run: ${TestRuns[n].IterationsCount}
#{for mrTest Runs[n].IterationsCount}

Narme: ${TestRuns[n].lterations[ni.Name}

Status: ${TestRuns[n].lterations[nj.Status}

Paraneters: ${TestRuns[n].lterations[n].Paraneters}

/'l lterating over paraneters for each test run iteration
Paraneters Total: ${TestRuns[n].Iterations[ni.ParanetersCount}
#{for | =TestRuns[n].lterations[ni.ParanetersCount}

Key: ${TestRuns[n].Iterations[n].Paranmeters[|].Key}

Val ue: ${TestRuns[n].lterations[n].Paranmeters[l|]. Val ue}

#{ end}

/1 lterating over preconditions for each test run iteration
Preconditions Total: ${TestRuns[n].lterations[ni.PreConditionsCount}
#{for | =TestRuns[n].lterations[ni.PreConditionsCount}
Key: ${TestRuns[n].Iterations[nj.PreConditions[l].Key}
Summary: ${TestRuns[n].lterations[ni.PreConditions[l].Sumrary}
Definition: ${TestRuns[n].lterations[ni.PreConditions[l].Conditions}
Type: ${TestRuns[n].lterations[n].PreConditions[l].Pre-Condition Type}
#{ end}

/llterating over test steps for each test run iteration
#{for i=TestRuns[n].lterations[ni.TestStepsCount}
Step Nunber: ${TestRuns[n].lterations[ni.TestSteps[i].StepNunber}
Action: ${TestRuns[n].lterations[n].TestSteps[i].Action}
Data: ${TestRuns[n].Iterations[ni.TestSteps[i].Data}
Expected Result: ${TestRuns[n].lterations[n].TestSteps[i].ExpectedResult}
Status: ${TestRuns[n].lterations[n].TestSteps[i].Status}
Comment: ${TestRuns[n].Iterations[n].TestSteps[i].Conent}
Actual Result: ${TestRuns[n].lterations[nj.TestSteps[i].Actual Result}
/'l Replace the placeholder text to export any customfield associated with the test step.
Step Custom Fiel d: ${ Test Runs[n].Iterations[nj.TestSteps[i].<Step Custom Fi el d>}

/] lteration Test Step Attachments
#{for | =TestRuns[n].lterations[ni.TestSteps[i].AttachmentsCount}
Id: ${TestRuns[n].lterations[n].TestSteps[i].Attachnents[I].1d}
Name: ${TestRuns[n].Iterations[ni.TestSteps[i].Attachnments[|]. Nane}
I mage: ${TestRuns[n].lterations[n].TestSteps[i].Attachments[|].Attachnent}
FileURL: ${TestRuns[n].lterations[n].TestSteps[i].Attachnents[I|].FileURL}
#{ end}
Il lteration Test Step Evidences
#{for | =TestRuns[n].Iterations[nj.TestSteps[i].EvidencesCount}
Id: ${TestRuns[n].Iterations[nj.TestSteps[i].Evidences[|].!|d}
Nane: ${TestRuns[n].Iterations[n].TestSteps[i].Evidences[|].Nane}
Evi dence: ${TestRuns[n].lterations[ni.TestSteps[i].Evidences[|].Evidence}
#{ end}
/] lteration Test Step Defects
#{for |=TestRuns[n].lterations[n].TestSteps[i]. DefectsCount}
Description: ${TestRuns[n].lterations[n].TestSteps[i].Defects[I].Description}
Id: ${TestRuns[n].Iterations[nj.TestSteps[i].Defects[l].Id}
Key: ${TestRuns[n].lterations[n].TestSteps[i].Defects[l].Key}
Summary: ${TestRuns[n].lterations[n].TestSteps[i].Defects[|].Sumuary}
#{ end}
#{ end}
#{ end}
#{ end}

	Exporting a Test Execution

