
Iterations

Iterating Issue Links
Iterating Issue Comments
Iterating Issue Worklogs
Iterating Issue Subtasks
Iterating Issue Components
Iterating Issue Status Transitions
Iterating Issue Attached Images
Iterating Issue Attachments
Iterating Issue Labels
Iterating Fix Versions of an Issue
Iterating Affected Versions of an Issue
Iterating Project Versions
Iterating Sprints
Iterating Issue History Entries
Iterating Project Components
Iterating Issues In Epic
Iterating JQL Queries
Applying filters to Iterations
Nested Iterations
Iterating in the same line of the document
Iterating in the same cell in an Excel document
Iterating with the BREAK or CONTINUE statement
Sorting iterations

Sort By Bulk export

Iterating Issue Links
Because it is not known in advance how many linked issues exist for an issue, you can iterate a section over all the linked issues of an issue. This allows
you to create a table that dynamically grows according to the number of existing linked issues.

All fields listed are available on Links[n] because they represent an issue. In addition, there are two new fields at the here u can also use a Filter Name or a
[n] level: Fi

Field Description

AppType Returns the Application Type. The values can be:

Application Value Description

JIRA Link from the same Jira Instance

External Jira Link from the another Jira Instance

Confluence Link from a Confluence page

External External link

LinkType Returns the Link Type.

Expand to see the sample code

#{for links}
 ${Links[n].AppType}
 ${Links[n].LinkType}
 ${Links[n].Key}
 ${Links[n].Summary}
 ${Links[n].URL}
#{end}

or

#{for <VariableName>=LinksCount}
 Content and Linked Issue Mappings. Example: ${Links[VariableName].Field}
#{end}

 Note: When the link you are iterating is of AppTypes or the name is obtained using the Summary property.External Jira ,Confluence

http://confluence.xpand-addons.com/display/XPORTER/Mappings#Mappings-UsingMappings

The documents below demonstrate examples both in Word and Excel template that iterates over linked issues.

 Iterating_Issue_Links.docx

 Iterating_Issue_Links.xlsx

Iterating Issue Comments
Because it is not known in advance how many comments exist for an issue, you can iterate a section over all the comments on an issue. This allows you to
create a table that dynamically grows according to the number of existing comments. The notation is:

Comments Fields Description

Author The author of the comment

AuthorFullName The full name of the author of the comment

Body The comment body WIKI

Created The date the comment was posted

CreatedDate The date the comment was posted

CreatedDateTime The date the comment was posted

GroupLevel The group level of the comment

Internal The comment is internal or public

Expand to see the sample code

#{for comments}
 ${Comments[n].Author}
 ${Comments[n].AuthorFullName}
 ${Comments[n].Body}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Comments[n].Created}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Comments[n].CreatedDate}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Comments[n].CreatedDateTime}
 ${Comments[n].GroupLevel}
 ${Comments[n].Internal}
#{end}

or

#{for <VariableName>=CommentsCount}
 Content and Issue Mappings. Example: ${Comments[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over all the issue comments.

 Iterating_Issue_Comments.docx

 Iterating_Issue_Comments.xlsx

Iterating Issue Worklogs
Because it is not known in advance how many worklogs exist for an issue, you can iterate a section over all the worklogs of an issue. This allow you to
create a table that dynamically grows according to the number of existing worklogs. The notation is:

Worklogs Fields Description

Author The author of the worklog

AuthorFullName The full name of the author of the worklog

https://confluence.getxray.app/download/attachments/37072394/Iterations_Links.docx?version=1&modificationDate=1605283435795&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Links.xlsx?version=2&modificationDate=1605283670542&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Comments.docx?version=1&modificationDate=1605519205559&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Comments.xlsx?version=1&modificationDate=1605519841043&api=v2

Comment The comment of the worklog WIKI

Created The worklog's creation date.

CreatedDate The worklog's creation date.

CreatedDateTime The worklog's creation date.

Date Started The date the worklog was started

StartDate The date the worklog was started

StartDateTime The date the worklog was started

TimeSpent The time spent in seconds

Time Spent The time spent in seconds

TimeSpentFormatted The time spent as displayed on Jira

BillableSeconds The billable seconds ()Belongs to Tempo Timesheets plugin

Expand to see the sample code

#{for worklogs}
 ${Worklogs[n].Author}
 ${Worklogs[n].AuthorFullName}
 ${Worklogs[n].Comment}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].Created}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].CreatedDate}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].CreatedDateTime}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].StartDate}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].Date Started}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Worklogs[n].StartDateTime}
 ${Worklogs[n].Time Spent}
 ${Worklogs[n].TimeSpent}
 ${Worklogs[n].TimeSpentFormatted}
 ${Worklogs[n].BillableSeconds}
#{end}

or

#{for <VariableName>=WorklogsCount}
 Content and Worklog Mappings. Example: ${Worklogs[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue worklogs.

 Iterating_Issue_Worklogs.docx

 Iterating_Issue_Worklogs.xlsx

Iterating Issue Subtasks
All fields listed are available on Subtasks[n] because they represent an issue.here

Because it is not known in advance how many subtasks exist for an issue, you can iterate a section over all the subtasks of an issue. This allows you to
create a table that dynamically grows according to the number of existing subtasks. The notation is:

Subtasks Fields Description

Key The key of the subtasks

Summary The summary of the subtasks

AssigneeUserDisplayName The assignee user of the subtasks

https://confluence.getxray.app/download/attachments/37072394/Iterations_Worklogs.docx?version=1&modificationDate=1605523685445&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Worklogs.xlsx?version=1&modificationDate=1605523769246&api=v2
http://confluence.xpand-addons.com/display/XPORTER/Mappings#Mappings-UsingMappings

ParentIssueKey The issue parent key

Expand to see the sample code

#{for subtasks}
 ${Subtasks[n].Key}
 ${Subtasks[n].Summary}
 ${Subtasks[n].AssigneeUserDisplayName}
 ${Subtasks[n].ParentIssueKey}
#{end}

or

#{for <VariableName>=SubtasksCount}
 Content and Issue Mappings. Example: ${Subtasks[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue subtasks.

 Iterating_Issue_Subtasks.docx

 Iterating_Issue_Subtasks.xlsx

Iterating Issue Components
Because it is not known in advance how many components exist for an issue, you can iterate a section over all the components of an issue. This allows
you to create a table that dynamically grows according to the number of existing components. The notation is:

Components Fields Description

Name The name of the component

Description The description of the component

Lead The name of the component lead

Id The ID of the component

ProjectId The project ID of the component

AssigneeType The assignee type of the component

Expand to see the sample code

#{for components}
 ${Components[n].Name}
 ${Components[n].Description}
 ${fullname:Components[n].Lead}
 ${Components[n].Id}
 ${Components[n].ProjectId}
 ${Components[n].AssigneeType}
#{end}

#{for <VariableName>=ComponentsCount}
 Content and Components Mappings. Example: ${Components[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue components.

 Iterating_Issue_Components.docx

 Iterating_Issue_Components.xlsx

https://confluence.getxray.app/download/attachments/37072394/Iterations_Subtasks.docx?version=1&modificationDate=1605524817262&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Subtasks.xlsx?version=1&modificationDate=1605525181506&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_Components.docx?version=1&modificationDate=1605525873879&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_Components.xlsx?version=1&modificationDate=1605525901903&api=v2

Iterating Issue Status Transitions
Because it is not known in advance how many Status Transitions exist for an issue, you can iterate a section over all the Status Transitions of an issue.
This allows you to create a table that dynamically grows according to the number of existing status transitions. The notation is:

Status Transitions Fields Description

Author The author of the status transition

Created The date the status transition was performed

CreatedDate The date the status transition was performed

CreatedDateTime The date the status transition was performed

OldStatus The old status of the status transition

NewStatus The new status of the status transition

Expand to see the sample code

#{for statusTransitions}
 ${StatusTransitions[n].Author}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):StatusTransitions[n].Created}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):StatusTransitions[n].CreatedDate}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):StatusTransitions[n].CreatedDateTime}
 ${StatusTransitions[n].OldStatus}
 ${StatusTransitions[n].NewStatus}
#{end}

or

#{for <VariableName>=StatusTransitionsCount}
 Content and StatusTransitions Mappings. Example: ${StatusTransitions[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue status transitions.

 Iterating_Issue_StatusTransitions.docx

 Iterating_Issue_StatusTransitions.xlsx

Iterating Issue Attached Images
Because it is not known in advance how many Images can exist for an issue (as an attachment), you can iterate a section over all the attached images of
an issue to get some metadata about them. This allows you to create a table that dynamically grows according to the number of existing images. The
notation is:

Attachments Images Fields Description

ID The ID of the attached image

Image The image of the attached image

Name The name of the attached image

Size The size of the attached image

HumanReadableSize The size of the attached image

Author The author (ID) of the attached image

Created The date was createdthe attached image

CreatedDate The date the attached image was created

https://confluence.getxray.app/download/attachments/37072394/Iterations_StatusTransitions.docx?version=1&modificationDate=1605526570786&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_StatusTransitions.xlsx?version=1&modificationDate=1605526591865&api=v2

CreatedDateTime The date the attached image was created

MimeType The type of the attached image

ThumbnailURL The URL to the thumbnail of the image

Expand to see the sample code

#{for images}
 ${Images[n].Image|maxwidth=150|maxheight=150}
 ${Images[n].Name}
 ${Images[n].ID}
 ${Images[n].Size}
 ${Images[n].HumanReadableSize}
 ${Images[n].Author}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Images[n].Created}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Images[n].CreatedDate}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Images[n].CreatedDateTime}
 ${Images[n].MimeType}
 ${Images[n].ThumbnailURL}
 #{end}

or

#{for <VariableName>=ImagesCount}
 Content and Images Mappings. Example: ${Images[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the attached images for each issue.

 Iterating_Issue_Images.docx

 Iterating_Issue_Images.xlsx

You can use the mappings width and height to define the exact width and height of the printed image.

Expand to see the sample code

#{for images}
 ${Images[n].Image|width=150|height=150}
 #{end}

These values are in pixels and if you only define one of them the image will be rescaled.

Iterating Issue Attachments
Because it is not known in advance how many attachments exist in an issue, you can iterate a section over all the attachments of an issue. This allows you
to create a table that dynamically grows according to the number of existing attachments. The notation is:

Attachments Fields Description

ID The ID of the attachment

Xporter will automatically read the EXIF orientation property of an image and rotate it to its correct orientation. You can turn this off by adding thi
 to your template.s property

Note that, if you use both maxWidth and width mappings, only the max value will be read. The same behavior happens with height and
maxHeight.

https://confluence.getxray.app/download/attachments/37072394/Iterations_AttachedImages.docx?version=1&modificationDate=1605528573487&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_AttachedImages.xlsx?version=1&modificationDate=1605528595409&api=v2
https://confluence.xpand-it.com/display/XPORTER/Props#Props-ProcessEXIFproperty
https://confluence.xpand-it.com/display/XPORTER/Props#Props-ProcessEXIFproperty

Id The ID of the attachment

Name The name of the attachment

Author The author of the attachment

AuthorFullName The full name of the author of the attachment

Created The date the was created attachment

CreatedDate The date the attachment was created

CreatedDateTime The date the attachment was created

Size The size of the attachment

HumanReadableSize The formatted size of the attachment

MimeType The type of the attachment

Expand to see the sample code

#{for attachments}
 ${Attachments[n].ID}
 ${Attachments[n].Name}
 ${Attachments[n].Author}
 ${Attachments[n].AuthorFullName}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Attachments[n].Created}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Attachments[n].CreatedDate}
 ${dateformat("dd-MM-yyyy HH:mm:ss"):Attachments[n].CreatedDateTime}
 ${Attachments[n].Size}
 ${Attachments[n].HumanReadableSize}
 ${Attachments[n].MimeType}
#{end}

or

#{for <VariableName>=AttachmentsCount}
 Content and Issue Mappings. Example: ${Attachments[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue's attachments.

 Iterating_Issue_Attachments.docx

 Iterating_Issue_Attachments.xlsx

Iterating Issue Labels
Because it is not known in advance how many labels exist in an issue, you can iterate a section over all the labels of an issue. The notation is:

Attachments Fields Description

Name The name of the label

https://confluence.getxray.app/download/attachments/37072394/Iterations_Attachments.docx?version=1&modificationDate=1605536449505&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Attachments.xlsx?version=1&modificationDate=1605536477588&api=v2

Expand to see the sample code

#{for labels}
 ${Labels[n].Name}
#{end}

or

#{for <VariableName>=LabelsCount}
 Content and Versions Issue Mappings. Example: ${Labels[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue's labels.

 Iterating_Issue_Labels.docx

 Iterating_Issue_Labels.xlsx

Iterating Fix Versions of an Issue
You can iterate over all fix versions to which the issue belong to. The notation is:

Versions Fields Description

Name The version name

Description The version description

Start date Starting date of the version

Release date Release date of the version

Archived Boolean that indicates if the version is archived or not

Released Boolean that indicates if the version is released or not

Expand to see the sample code

#{for FixVersions}
 ${FixVersions[n].Name}
 ${FixVersions[n].Description}
 ${dateformat(“dd-MM-yyyy”):FixVersions[n].Start date}
 ${dateformat(“dd-MM-yyyy”):FixVersions[n].Release date}
 ${FixVersions[n].Archived}
 ${FixVersions[n].Released}
#{end}

or

#{for <VariableName>=FixVersionsCount}
 Content and Versions Issue Mappings. Example: ${FixVersions[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue's fix versions.

 Iterating_Issue_FixVersions.docx

 Iterating_Issue_FixVersions.xlsx

Iterating Affected Versions of an Issue

https://confluence.getxray.app/download/attachments/37072394/Iterations_Labels.docx?version=1&modificationDate=1605536766395&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Labels.xlsx?version=1&modificationDate=1605536797500&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_FixVersions.docx?version=1&modificationDate=1605538480684&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_FixVersions.xlsx?version=1&modificationDate=1605538513291&api=v2

You can iterate over all affected versions to which the issue belongs to. The notation is:

Versions Fields Description

Name The version name

Description The version description

Start date Starting date of the version

Release date Release date of the version

Archived Boolean that indicates if the version is archived or not

Released Boolean that indicates if the version is released or not

Expand to see the sample code

#{for AffectedVersions}
 ${AffectedVersions[n].Name}
 ${AffectedVersions[n].Description}
 ${dateformat(“dd-MM-yyyy”):AffectedVersions[n].Start date}
 ${dateformat(“dd-MM-yyyy”):AffectedVersions[n].Release date}
 ${AffectedVersions[n].Archived}
 ${AffectedVersions[n].Released}
#{end}

or

#{for <VariableName>=AffectedVersionsCount}
 Content and Versions Issue Mappings. Example: ${AffectedVersions[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue's affected versions.

 Iterating_Issue_AffectedVersions.docx

 Iterating_Issue_AffectedVersions.xlsx

Iterating Project Versions
You can iterate over all project versions to which the issue belongs to. The notation is:

Project Versions Fields Description

Name The version name

Description The version description

Start date Starting date of the version

Release date Release date of the version

Archived Boolean that indicates if the version is archived or not

Released Boolean that indicates if the version is released or not

https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_AffectedVersions.docx?version=1&modificationDate=1605538908996&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_AffectedVersions.xlsx?version=1&modificationDate=1605538933214&api=v2

Expand to see the smaple code

#{for projectVersions}
 ${ProjectVersions[n].Name}
 ${ProjectVersions[n].Description}
 ${dateformat(“dd-MM-yyyy”):ProjectVersions[n].Start date}
 ${dateformat(“dd-MM-yyyy”):ProjectVersions[n].Release date}
 ${ProjectVersions[n].Archived}
 ${ProjectVersions[n].Released}
#{end}

or

#{for <VariableName>=ProjectVersionsCount}
 Content and Project Versions Mappings. Example: ${ProjectVersions[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue's project versions.

 Iterating_Issue_ProjectVersions.docx

 Iterating_Issue_ProjectVersions.xlsx

Iterating Sprints
You can iterate over all sprints to which the issue belongs. The notation is:

Project Versions Fields Description

Name The sprint name

Status The sprint status

Expand to see the smaple code

#{for sprints}
 ${Sprints[n].Name}
 ${Sprints[n].Status}
#{end}

or

#{for <VariableName>=SprintsCount}
 Content and Sprints Mappings. Example: ${Sprints[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue's project versions.

 Iterating_Issue_Sprints.docx

 Iterating_Issue_Sprints.xlsx

Iterating Issue History Entries
You can iterate over all issue's changelogs. The notation is:

Project Versions Fields Description

https://confluence.getxray.app/download/attachments/37072394/Iterations_ProjectVersions.docx?version=1&modificationDate=1605539319783&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_ProjectVersions.xlsx?version=1&modificationDate=1605539346205&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_Sprints.docx?version=1&modificationDate=1605544929803&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_Sprints.xlsx?version=1&modificationDate=1605544965001&api=v2

Author The user who made the change

Created Date of the change

CreatedDate Date of the change

CreatedDateTime Date of the change

ChangedItemsCount Number of items changed

Expand to see the smaple code

#{for historyEntries}
 ${HistoryEntries[n].Author}
 ${HistoryEntries[n].Created}
 ${HistoryEntries[n].CreatedDate}
 ${HistoryEntries[n].CreatedDateTime}
 ${HistoryEntries[n].ChangedItemsCount}
 #{for i=HistoryEntries[n].ChangedItemsCount}
 ${HistoryEntries[n].ChangedItems[i].Field}
 ${HistoryEntries[n].ChangedItems[i].From}
 ${HistoryEntries[n].ChangedItems[i].To}
 #{end}
#{end}

or

#{for <VariableName>=HistoryEntriesCount}
 Content and History Entries Mappings. Example: ${HistoryEntries[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issue's changelogs.

 Iterating_Issue_Histories.docx

 Iterating_Issue_Histories.xlsx

Iterating Project Components
You can iterate over all project components. The notation is:

Expand to see the sample code

#{for ProjectComponents}
 ${ProjectComponents[n].Name}
 ${ProjectComponents[n].Description}
 ${fullname:ProjectComponents[n].Lead}
 ${ProjectComponents[n].Id}
 ${ProjectComponents[n].ProjectId}
 ${ProjectComponents[n].AssigneeType}
#{end}

#{for <VariableName>=ProjectComponentsCount}
 Content and Components Mappings. Example: ${ProjectComponents[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the project components.

 Iterating_Issue_ProjectComponents.docx

 Iterating_Issue_ProjectComponents.xlsx

https://confluence.getxray.app/download/attachments/37072394/Iterations_Histories.docx?version=2&modificationDate=1605605737323&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_Histories.xlsx?version=2&modificationDate=1605605774726&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_ProjectComponents.docx?version=1&modificationDate=1609432072702&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterating_Issue_ProjectComponents.xlsx?version=1&modificationDate=1609432086033&api=v2

Iterating Issues In Epic
All fields listed are available on IssuesInEpic[n] because they represent an issue.here

Because it is not known in advance how many issues exist for an epic, you can iterate a section over all the issues of an epic issue. This allows you to
create a table that dynamically grows according to the number of existing issues. The notation is:

Expand to see the sample code

#{for IssuesInEpic}
 ${IssuesInEpic[n].Key}
 ${IssuesInEpic[n].Summary}
 ${IssuesInEpic[n].Description}
 ${IssuesInEpic[n].Epic Link.Key}
#{end}

or

#{for <VariableName>=IssuesInEpicCount}
 Content and Issue Mappings. Example: ${IssuesInEpic[VariableName].Field}
#{end}

The documents below demonstrate examples both in Word and Excel template that iterates over the issues in epic.

 Iterating_Issues_In_Epic.docx

 Iterating_Issues_In_Epic.xlsx

Iterating JQL Queries
You can iterate issues that are the result of a . The syntax is similar to the other iterations, but there is a parameter that will receive the JQL Query clause
JQL Query. A few examples are provided below.

Expand to see the sample code

a simple example iterating the details of issues from a specified Project:

#{for i=JQLIssuesCount|clause=project = DEMO}
 ${JQLIssues[i].Key}
 ${JQLIssues[i].Summary}
#{end}

or a more advanced example iterating the details of the Parent issue from the current Subtask:

#{for i=JQLIssuesCount|clause=issuekey = ${ParentIssueKey}}
 ${JQLIssues[i].Key}
 ${JQLIssues[i].Id}
 ${JQLIssues[i].Description}
#{end}

The documents below demonstrate examples both in Word and Excel template with JQL examples.

 JQL.docx

 JQL.xlsx

You can also use a Filter Name or a Filter Id as a clause. For more info, check [http://confluence.xpand-addons.com/display/public/XPORTER
]/JQL

http://confluence.xpand-addons.com/display/XPORTER/Mappings#Mappings-UsingMappings
https://confluence.getxray.app/download/attachments/37072394/Iterations_IssuesInEpic.docx?version=1&modificationDate=1609433750755&api=v2
https://confluence.getxray.app/download/attachments/37072394/Iterations_IssuesInEpic.xlsx?version=1&modificationDate=1609433771986&api=v2
https://confluence.atlassian.com/display/JIRA/Advanced+Searching#AdvancedSearching-WhatisanAdvancedSearch?
https://confluence.getxray.app/download/attachments/37072394/JQL.docx?version=1&modificationDate=1605540320455&api=v2
https://confluence.getxray.app/download/attachments/37072394/JQL.xlsx?version=1&modificationDate=1605540334564&api=v2
http://confluence.getxray.app/display/public/XPORTER/JQL
http://confluence.getxray.app/display/public/XPORTER/JQL

Applying filters to Iterations
If you want to take the previous iterations over comments, subtasks and issue links to another level of control, you can use a JavaScript filter to define over
which issues the iteration will be made. This can be useful in the following scenarios:

Iterating over linked issues that are only of a specific issue type
Iterating over subtasks of a specific issue type
Iterating over linked issues with a specific priority
Iterating over comments created by a specific user

The notation for applying filters to the iterations is:

Expand to see the sample code

#{for <VariableName>=<LinksCount|SubtasksCount|CommentsCount|WorklogsCount>|filter=%{<Javascript>}}
 Content here
#{end}

VariableName: is the name of the variable to use as the iteration index.
 LinksCount|SubtasksCount|CommentsCount: indicates over which type of entities you want to iterate.

Filter: indicates the filter to be applied in the iteration.

Notice that the filter is evaluated as a JavaScript expression, which provides flexibility in the definition of the conditions. You can use and (&&), or (||) and
other logical operators supported by the JavaScript language.

It is also possible to format fields inside iteration filters. For more information on formatters, see .Iterations

The document below demonstrates an example of a template that iterates over issue links and comments with filters being applied.

Links_with_Filter_and_HighPriority.docx

Nested Iterations
You can have multiple levels of iterations inside other iterations. This can be useful if you want to iterate the comments of each linked issue or the attached
images for each subtask.

Expand to see the sample code

#{for <VariableName1>=LinksCount}
 #{for <VariableName2>=Iteration[n].Count}
 Content here
 #{end}
#{end}

The document below demonstrates multiple scenarios where nested iterations can be useful.

Nested_iterations.docx

Iterating in the same line of the document
You can also possible to iterate values in the same line of the document. This can be useful if you want to display a list of Subtasks on Linked Issues in the
same line, separated by commas or spaces.

Expand to see the sample code

Users that added comments to this issue: #{for comments}${Comments[n].Author} #{end}

Subtasks of this issue: #{for j=SubtasksCount}${Subtasks[j].Key};#{end}

Linked issues this issue duplicates: #{for j=LinksCount|filter=%{'${Links[j].LinkType}'.equals
('duplicates')}}${Links[j].Key} #{end}

https://confluence.getxray.app/download/attachments/37072394/Links_with_Filter.docx?version=1&modificationDate=1605615057701&api=v2
https://confluence.getxray.app/download/attachments/37072394/Nested_iterations.docx?version=1&modificationDate=1605618139678&api=v2

Iterating in the same cell in an Excel document
You can also iterate values in the same cell in an Excel document. You can achieve this by simply making your Iteration inside the same cell.

You can use all the Iterations that you are used to and construct them in the exact same way, the difference being that you only use one cell to do them.

Expand to see the sample code

Issue iteration as a demonstration.
Copy this iteration below and paste it into a cell.

&{for issues} ${Key} &{end}

Iterating with the BREAK or CONTINUE statement
You can iterate anything, set up a Conditional expression and then utilize the BREAK and CONTINUE statements.

The way to do this is by doing a normal Conditional expression and using the mapping #{break} or #{continue} inside it.

Expand to see the sample code

Imagine that you have a Jira Issue that contains these comments:
- Hello
- World
- Greetings
- Hi

For the Break functionality, lets say that you want to stop the iteration if the current comment is "World".
Here is the template for that:
#{for comments}
Current Comment: ${Comments[n].Body}
#{if (%{'${Comments[n].Body}'.equals('World')})}
#{break}
#{end}
Current Comment Author: ${Comments[n].Author}
#{end}
In this case, Xporter for Jira will print the comment "Hello" and it´s author. Next it will print the comment
Body "World" but since the Conditional expression is true, it will stop the iteration all together and not
print anything else.
Note: Anything after the #{break} mapping will not be printed in the exported document.

For the Continue functionality, lets say that you want to skip to the next iteration if the current comment is
"World", bypassing the Author mapping for this iteration. Here is the template for that:
#{for comments}
Current Comment: ${Comments[n].Body}
#{if (%{'${Comments[n].Body}'.equals('World')})}
#{continue}
#{end}
Current Comment Author: ${Comments[n].Author}
#{end}
In this case, Xporter for Jira will print the comment "Hello" and it´s author. Next, it will print the comment
Body "World" but since the Conditional expression is true, it will continue to the next iteration, not printing
the Author of the "World" comment.

Sorting iterations
Imagine that you have an iteration and want to sort it by any field that it can export normally. This will be the header for such an iteration:

#{for comments|sortby=<Iteration mapping>}

NOTE: The mapping after the "sortby" must be equal to the supported mappings for each Iteration.

Example:

Expand to see the sample code

This iteration will be sorted by the Body of all the comments in the issue.

#{for comments|sortby=Body}
${Comments[n].Author}
${Comments[n].Body}
#{end}

Sort By Bulk export

The sortby can also be used to sort a &{for issues} iteration on a Bulk Export.

Expand to see the sample code

&{for issues|sortby=IssueTypeName}
${Key} - ${IssueTypeName}
&{end}

Sorting Criteria

asc and can be defined in order to define how do you want to sort your data. The default value is .desc asc

WIKI indicates that the field supports wiki format. More about here.

https://confluence.getxray.app/display/XPORTERCLOUD/Wiki+Markup%2C+HTML+and+Links

	Iterations

